Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.132
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 37(1): 25-35, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37717227

RESUMEN

The potato cyst nematode (Globodera rostochiensis) is an obligate root pathogen of potatoes. G. rostochiensis encodes several highly expanded effector gene families, including the Gr4D06 family; however, little is known about the function of this effector family. We cloned four 29D09 genes from G. rostochiensis (named Gr29D09v1/v2/v3/v4) that share high sequence similarity and are homologous to the Hg29D09 and Hg4D06 effector genes from the soybean cyst nematode (Heterodera glycines). Phylogenetic analysis revealed that Gr29D09 genes belong to a subgroup of the Gr4D06 family. We showed that Gr29D09 genes are expressed exclusively within the nematode's dorsal gland cell and are dramatically upregulated in parasitic stages, indicating involvement of Gr29D09 effectors in nematode parasitism. Transgenic potato lines overexpressing Gr29D09 variants showed increased susceptibility to G. rostochiensis. Transient expression assays in Nicotiana benthamiana demonstrated that Gr29D09v3 could suppress reactive oxygen species (ROS) production and defense gene expression induced by flg22 and cell death mediated by immune receptors. These results suggest a critical role of Gr29D09 effectors in defense suppression. The use of affinity purification coupled with nanoliquid chromatography-tandem mass spectrometry identified potato hexokinase 1 (StHXK1) as a candidate target of Gr29D09. The Gr29D09-StHXK1 interaction was further confirmed using in planta protein-protein interaction assays. Plant HXKs have been implicated in defense regulation against pathogen infection. Interestingly, we found that StHXK1 could enhance flg22-induced ROS production, consistent with a positive role of plant HXKs in defense. Altogether, our results suggest that targeting StHXK1 by Gr29D09 effectors may impair the positive function of StHXK1 in plant immunity, thereby aiding nematode parasitism. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Nematodos , Solanum tuberosum , Tylenchoidea , Animales , Hexoquinasa/genética , Especies Reactivas de Oxígeno , Filogenia , Proteínas/genética , Tylenchoidea/fisiología
2.
PLoS Genet ; 19(10): e1010961, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37856383

RESUMEN

Imprinted genes are subject to germline epigenetic modification resulting in parental-specific allelic silencing. Although genomic imprinting is thought to be important for maternal behaviour, this idea is based on serendipitous findings from a small number of imprinted genes. Here, we undertook an unbiased systems biology approach, taking advantage of the recent delineation of specific neuronal populations responsible for controlling parental care, to test whether imprinted genes significantly converge to regulate parenting behaviour. Using single-cell RNA sequencing datasets, we identified a specific enrichment of imprinted gene expression in a recognised "parenting hub", the galanin-expressing neurons of the preoptic area. We tested the validity of linking enriched expression in these neurons to function by focusing on MAGE family member L2 (Magel2), an imprinted gene not previously linked to parenting behaviour. We confirmed expression of Magel2 in the preoptic area galanin expressing neurons. We then examined the parenting behaviour of Magel2-null(+/p) mice. Magel2-null mothers, fathers and virgin females demonstrated deficits in pup retrieval, nest building and pup-directed motivation, identifying a central role for this gene in parenting. Finally, we show that Magel2-null mothers and fathers have a significant reduction in POA galanin expressing cells, which in turn contributes to a reduced c-Fos response in the POA upon exposure to pups. Our findings identify a novel imprinted gene that impacts parenting behaviour and, moreover, demonstrates the utility of using single-cell RNA sequencing data to predict gene function from expression and in doing so here, have identified a purposeful role for genomic imprinting in mediating parental behaviour.


Asunto(s)
Galanina , Responsabilidad Parental , Femenino , Animales , Ratones , Galanina/genética , Galanina/metabolismo , Hipotálamo/metabolismo , Impresión Genómica/genética , Fenotipo , Antígenos de Neoplasias/genética , Proteínas/genética
3.
Nature ; 620(7973): 434-444, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37468638

RESUMEN

Advances in DNA sequencing and machine learning are providing insights into protein sequences and structures on an enormous scale1. However, the energetics driving folding are invisible in these structures and remain largely unknown2. The hidden thermodynamics of folding can drive disease3,4, shape protein evolution5-7 and guide protein engineering8-10, and new approaches are needed to reveal these thermodynamics for every sequence and structure. Here we present cDNA display proteolysis, a method for measuring thermodynamic folding stability for up to 900,000 protein domains in a one-week experiment. From 1.8 million measurements in total, we curated a set of around 776,000 high-quality folding stabilities covering all single amino acid variants and selected double mutants of 331 natural and 148 de novo designed protein domains 40-72 amino acids in length. Using this extensive dataset, we quantified (1) environmental factors influencing amino acid fitness, (2) thermodynamic couplings (including unexpected interactions) between protein sites, and (3) the global divergence between evolutionary amino acid usage and protein folding stability. We also examined how our approach could identify stability determinants in designed proteins and evaluate design methods. The cDNA display proteolysis method is fast, accurate and uniquely scalable, and promises to reveal the quantitative rules for how amino acid sequences encode folding stability.


Asunto(s)
Biología , Ingeniería de Proteínas , Pliegue de Proteína , Proteínas , Aminoácidos/genética , Aminoácidos/metabolismo , Biología/métodos , ADN Complementario/genética , Estabilidad Proteica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Termodinámica , Proteolisis , Ingeniería de Proteínas/métodos , Dominios Proteicos/genética , Mutación
4.
Genes (Basel) ; 14(6)2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37372426

RESUMEN

The B-box (BBX) protein, which is a zinc-finger protein containing one or two B-box domains, plays a crucial role in the growth and development of plants. Plant B-box genes are generally involved in morphogenesis, the growth of floral organs, and various life activities in response to stress. In this study, the sugar beet B-box genes (hereafter referred to as BvBBXs) were identified by searching the homologous sequences of the Arabidopsis thaliana B-box gene family. The gene structure, protein physicochemical properties, and phylogenetic analysis of these genes were systematically analyzed. In this study, 17 B-box gene family members were identified from the sugar beet genome. A B-box domain can be found in all sugar beet BBX proteins. BvBBXs encode 135 to 517 amino acids with a theoretical isoelectric point of 4.12 to 6.70. Chromosome localization studies revealed that BvBBXs were dispersed across nine sugar beet chromosomes except chromosomes 5 and 7. The sugar beet BBX gene family was divided into five subfamilies using phylogenetic analysis. The gene architectures of subfamily members on the same evolutionary tree branch are quite similar. Light, hormonal, and stress-related cis-acting elements can be found in the promoter region of BvBBXs. The BvBBX gene family was differently expressed in sugar beet following Cercospora leaf spot infection, according to RT-qPCR data. It is shown that the BvBBX gene family may influence how the plant reacts to a pathogen infection.


Asunto(s)
Beta vulgaris , Beta vulgaris/genética , Cercospora/genética , Filogenia , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas/genética , Azúcares/metabolismo
5.
Gene ; 869: 147401, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36996929

RESUMEN

In order to finish a bloodmeal successfully, hematophagous organisms often stored a variety of anticoagulant proteins in their salivary glands, such as proteins that inhibit platelet aggregation. When they ingest a bloodmeal, these proteins are injected into the host to prevent the blood from clotting. As one of the origins of leeches used in traditional Chinese medicine, H. nipponia was proved to be clinically effective in treatment of cardiovascular and cerebrovascular diseases. This study cloned the sequence of HnSaratin cDNA derived from salivary glands of H. nipponia. The sequence contains an open reading frame of 387 bp, encoding a protein of 128 amino acids containing a signal peptide of 21 amino acids. After removal of the signal peptide, the molecular mass of mature HnSaratin was 12.37 kDa, with a theoretical isoelectric point (pI) of 3.89. The N-terminal of mature HnSaratin was folded into a globular structure, in which 3 disulfide bonds, a ßßαßßß topology and 2 Glu residues that binds collagenous Lys2 were located, and the C-terminal formed a flexible region. The fusion HnSaratin protein was obtained by a prokaryotic expression system. The protein showed anti-platelet aggregation activity, and was observed to prevent blood clotting in rats. The significant high expression of HnSaratin mRNA in salivary glands was induced by bloodmeal ingestion of H. nipponia. Briefly, our work provides theoretical basis for further development and utilization of H. nipponia.


Asunto(s)
Sanguijuelas , Animales , Ratas , Clonación Molecular , Proteínas/genética , ADN Complementario/genética , ADN Complementario/metabolismo , Señales de Clasificación de Proteína/genética , Aminoácidos/genética
6.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36629451

RESUMEN

MOTIVATION: Structure-based stability prediction upon mutation is crucial for protein engineering and design, and for understanding genetic diseases or drug resistance events. For this task, we adopted a simple residue-based orientational potential that considers only three backbone atoms, previously applied in protein modeling. Its application to stability prediction only requires parametrizing 12 amino acid-dependent weights using cross-validation strategies on a curated dataset in which we tried to reduce the mutations that belong to protein-protein or protein-ligand interfaces, extreme conditions and the alanine over-representation. RESULTS: Our method, called KORPM, accurately predicts mutational effects on an independent benchmark dataset, whether the wild-type or mutated structure is used as starting point. Compared with state-of-the-art methods on this balanced dataset, our approach obtained the lowest root mean square error (RMSE) and the highest correlation between predicted and experimental ΔΔG measures, as well as better receiver operating characteristics and precision-recall curves. Our method is almost anti-symmetric by construction, and it performs thus similarly for the direct and reverse mutations with the corresponding wild-type and mutated structures. Despite the strong limitations of the available experimental mutation data in terms of size, variability, and heterogeneity, we show competitive results with a simple sum of energy terms, which is more efficient and less prone to overfitting. AVAILABILITY AND IMPLEMENTATION: https://github.com/chaconlab/korpm. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas , Programas Informáticos , Mutación , Proteínas/genética , Proteínas/química , Aminoácidos , Estabilidad Proteica
7.
Mol Immunol ; 153: 170-180, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36525884

RESUMEN

BACKGROUND: The Humulus japonicus pollen is one of the most common allergenic pollens in China. However, little is unveiled regarding the allergenic components in Humulus japonicus pollen. Our study aimed to purify and identify the pathogenesis-related 1 (PR-1) protein from Humulus japonicus pollen, and to characterize the molecular and immunochemical properties of this novel allergen. METHODS: The natural PR-1 protein (named as Hum j PR-1) was purified from Humulus japonicus pollen extracts with a combined strategy of chromatography, and identified by mass spectrometry. The coding sequence of Hum j PR-1 was confirmed by cDNA cloning. The recombinant Hum j PR-1 was expressed and purified from Escherichia coli. The allergenicity was assessed by immunoblot, enzyme-linked immunosorbent assay (ELISA), inhibition ELISA, and basophil activation test using Humulus japonicus allergic patients' whole blood. The physicochemical properties and 3-dimensional structure of it were comprehensively characterized by in silico methods. RESULTS: The allergenicity analysis revealed that 76.6 % (23/30) of the Humulus japonicus pollen allergic patients displayed specific IgE recognition of the natural Hum j PR-1. The cDNA sequence of Hum j PR-1 had a 516-bp open reading frame encoding 171 amino acids. Physicochemical analysis indicated that Hum j PR-1 was a stable and relatively thermostable protein. Hum j PR-1 shared a similar 3-dimensional folding pattern with other homologous allergens, which was a unique αßα sandwich structure containing 4 α-helices and 6 antiparallel ß-sheets, encompassing 4 conserved CAP domain. CONCLUSION: The natural PR-1 was firstly purified and characterized as a major allergenic allergen in Humulus japonicus pollen. These findings would contribute to developing diagnostic and therapeutic strategies for Humulus japonicus pollinosis.


Asunto(s)
Humulus , Hipersensibilidad , Humanos , Alérgenos/química , Humulus/genética , ADN Complementario , Polen , Proteínas/genética , Clonación Molecular , Proteínas de Plantas/química
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(1): 53-56, 2023 Jan 10.
Artículo en Chino | MEDLINE | ID: mdl-36585001

RESUMEN

OBJECTIVE: To explore the clinical characteristics and genetic etiology of a child with Schaaf-Yang syndrome (SYS). METHODS: Peripheral blood samples of the child and his parents were collected and subjected to whole exome sequencing. Sanger sequencing was used for family constellation verification, and bioinformatic analysis was performed for the candidate variant. RESULTS: The child, a 1-year-and-9-month-old boy, had clinical manifestations of retarded growth, small penis, and unusual facies. Genetic testing revealed that the child has harbored a novel heterozygous variant of c.3078dupG (p.Leu1027Valfs*28) of the MAGEL2 gene. Sanger sequencing showed that neither parent of the child carried the same variant. The c.3078dupG(p.Leu1027Valfs*28) variant of the MAGEL2 gene has not been included in the databases of ESP, 1000 Genomes and ExAC. According to the Standards and Guidelines for the Interpretation of Sequence Variants of the American College of Medical Genetics and Genomics (ACMG), the variant was judged to be pathogenic. CONCLUSION: The c.3078dupG (p.Leu1027Valfs*28) variant of the MAGEL2 gene probably underlay the SYS in this child, which has further expanded the spectrum of the MAGEL2 gene variants.


Asunto(s)
Discapacidades del Desarrollo , Niño , Humanos , Lactante , Masculino , Secuenciación del Exoma , Pruebas Genéticas , Heterocigoto , Mutación , Proteínas/genética , Discapacidades del Desarrollo/genética
9.
Artículo en Chino | WPRIM | ID: wpr-970877

RESUMEN

OBJECTIVE@#To explore the clinical characteristics and genetic etiology of a child with Schaaf-Yang syndrome (SYS).@*METHODS@#Peripheral blood samples of the child and his parents were collected and subjected to whole exome sequencing. Sanger sequencing was used for family constellation verification, and bioinformatic analysis was performed for the candidate variant.@*RESULTS@#The child, a 1-year-and-9-month-old boy, had clinical manifestations of retarded growth, small penis, and unusual facies. Genetic testing revealed that the child has harbored a novel heterozygous variant of c.3078dupG (p.Leu1027Valfs*28) of the MAGEL2 gene. Sanger sequencing showed that neither parent of the child carried the same variant. The c.3078dupG(p.Leu1027Valfs*28) variant of the MAGEL2 gene has not been included in the databases of ESP, 1000 Genomes and ExAC. According to the Standards and Guidelines for the Interpretation of Sequence Variants of the American College of Medical Genetics and Genomics (ACMG), the variant was judged to be pathogenic.@*CONCLUSION@#The c.3078dupG (p.Leu1027Valfs*28) variant of the MAGEL2 gene probably underlay the SYS in this child, which has further expanded the spectrum of the MAGEL2 gene variants.


Asunto(s)
Niño , Humanos , Lactante , Masculino , Secuenciación del Exoma , Pruebas Genéticas , Heterocigoto , Mutación , Proteínas/genética , Discapacidades del Desarrollo/genética
10.
Bioinformatics ; 38(23): 5168-5174, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36227117

RESUMEN

MOTIVATION: The advent of massive DNA sequencing technologies is producing a huge number of human single-nucleotide polymorphisms occurring in protein-coding regions and possibly changing their sequences. Discriminating harmful protein variations from neutral ones is one of the crucial challenges in precision medicine. Computational tools based on artificial intelligence provide models for protein sequence encoding, bypassing database searches for evolutionary information. We leverage the new encoding schemes for an efficient annotation of protein variants. RESULTS: E-SNPs&GO is a novel method that, given an input protein sequence and a single amino acid variation, can predict whether the variation is related to diseases or not. The proposed method adopts an input encoding completely based on protein language models and embedding techniques, specifically devised to encode protein sequences and GO functional annotations. We trained our model on a newly generated dataset of 101 146 human protein single amino acid variants in 13 661 proteins, derived from public resources. When tested on a blind set comprising 10 266 variants, our method well compares to recent approaches released in literature for the same task, reaching a Matthews Correlation Coefficient score of 0.72. We propose E-SNPs&GO as a suitable, efficient and accurate large-scale annotator of protein variant datasets. AVAILABILITY AND IMPLEMENTATION: The method is available as a webserver at https://esnpsandgo.biocomp.unibo.it. Datasets and predictions are available at https://esnpsandgo.biocomp.unibo.it/datasets. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Inteligencia Artificial , Polimorfismo de Nucleótido Simple , Humanos , Secuencia de Aminoácidos , Proteínas/genética , Proteínas/química , Aminoácidos , Biología Computacional/métodos , Anotación de Secuencia Molecular
11.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36007929

RESUMEN

Hyperphagia and obesity profoundly affect the health of children with Prader-Willi syndrome (PWS). The Magel2 gene among the genes in the Prader-Willi syndrome deletion region is expressed in proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC). Knockout of the Magel2 gene disrupts POMC neuronal circuits and functions. Here, we report that loss of the Magel2 gene exclusively in ARCPOMC neurons innervating the medial amygdala (MeA) causes a reduction in body weight in both male and female mice fed with a high-fat diet. This anti-obesity effect is associated with an increased locomotor activity. There are no significant differences in glucose and insulin tolerance in mice without the Magel2 gene in ARCPOMC neurons innervating the MeA. Plasma estrogen levels are higher in female mutant mice than in controls. Blockade of the G protein-coupled estrogen receptor (GPER), but not estrogen receptor-α (ER-α), reduces locomotor activity in female mutant mice. Hence, our study provides evidence that knockdown of the Magel2 gene in ARCPOMC neurons innervating the MeA reduces susceptibility to diet-induced obesity with increased locomotor activity through activation of central GPER.


Asunto(s)
Antígenos de Neoplasias/genética , Síndrome de Prader-Willi , Proopiomelanocortina , Proteínas/genética , Amígdala del Cerebelo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Obesidad/genética , Síndrome de Prader-Willi/genética , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proopiomelanocortina/farmacología
12.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35649342

RESUMEN

Internal validation is the most popular evaluation strategy used for drug-target predictive models. The simple random shuffling in the cross-validation, however, is not always ideal to handle large, diverse and copious datasets as it could potentially introduce bias. Hence, these predictive models cannot be comprehensively evaluated to provide insight into their general performance on a variety of use-cases (e.g. permutations of different levels of connectiveness and categories in drug and target space, as well as validations based on different data sources). In this work, we introduce a benchmark, BETA, that aims to address this gap by (i) providing an extensive multipartite network consisting of 0.97 million biomedical concepts and 8.5 million associations, in addition to 62 million drug-drug and protein-protein similarities and (ii) presenting evaluation strategies that reflect seven cases (i.e. general, screening with different connectivity, target and drug screening based on categories, searching for specific drugs and targets and drug repurposing for specific diseases), a total of seven Tests (consisting of 344 Tasks in total) across multiple sampling and validation strategies. Six state-of-the-art methods covering two broad input data types (chemical structure- and gene sequence-based and network-based) were tested across all the developed Tasks. The best-worst performing cases have been analyzed to demonstrate the ability of the proposed benchmark to identify limitations of the tested methods for running over the benchmark tasks. The results highlight BETA as a benchmark in the selection of computational strategies for drug repurposing and target discovery.


Asunto(s)
Benchmarking , Desarrollo de Medicamentos , Algoritmos , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos/métodos , Proteínas/genética
13.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35409125

RESUMEN

The aim of this work was to compare the multiple alignment methods MAHDS, T-Coffee, MUSCLE, Clustal Omega, Kalign, MAFFT, and PRANK in their ability to align highly divergent amino acid sequences. To accomplish this, we created test amino acid sequences with an average number of substitutions per amino acid (x) from 0.6 to 5.6, a total of 81 sets. Comparison of the performance of sequence alignments constructed by MAHDS and previously developed algorithms using the CS and Z score criteria and the benchmark alignment database (BAliBASE) indicated that, although the quality of the alignments built with MAHDS was somewhat lower than that of the other algorithms, it was compensated by greater statistical significance. MAHDS could construct statistically significant alignments of artificial sequences with x ≤ 4.8, whereas the other algorithms (T-Coffee, MUSCLE, Clustal Omega, Kalign, MAFFT, and PRANK) could not perform that at x > 2.4. The application of MAHDS to align 21 families of highly diverged proteins (identity < 20%) from Pfam and HOMSTRAD databases showed that it could calculate statistically significant alignments in cases when the other methods failed. Thus, MAHDS could be used to construct statistically significant multiple alignments of highly divergent protein sequences, which accumulated multiple mutations during evolution.


Asunto(s)
Algoritmos , Café , Secuencia de Aminoácidos , Proteínas/química , Proteínas/genética , Alineación de Secuencia , Programas Informáticos
14.
Neuropsychopharmacology ; 47(11): 1901-1912, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35396500

RESUMEN

Atypical responses to sensory stimuli are considered as a core aspect and early life marker of autism spectrum disorders (ASD). Although recent findings performed in mouse ASD genetic models report sensory deficits, these were explored exclusively during juvenile or adult period. Whether sensory dysfunctions might be present at the early life stage and rescued by therapeutic strategy are fairly uninvestigated. Here we found that under cool environment neonatal mice lacking the autism-associated gene Magel2 present pup calls hypo-reactivity and are retrieved with delay by their wild-type dam. This neonatal atypical sensory reactivity to cool stimuli was not associated with autonomic thermoregulatory alteration but with a deficit of the oxytocinergic system. Indeed, we show in control neonates that pharmacogenetic inactivation of hypothalamic oxytocin neurons mimicked atypical thermosensory reactivity found in Magel2 mutants. Furthermore, pharmacological intranasal administration of oxytocin to Magel2 neonates was able to rescue both the atypical thermosensory response and the maternal pup retrieval. This preclinical study establishes for the first-time early life impairments in thermosensory integration and suggest a therapeutic potential benefit of intranasal oxytocin treatment on neonatal atypical sensory reactivity for autism.


Asunto(s)
Trastorno Autístico , Hipoestesia , Conducta Materna , Oxitocina , Proteínas , Administración Intranasal , Factores de Edad , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Trastorno del Espectro Autista/complicaciones , Trastorno Autístico/complicaciones , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/metabolismo , Femenino , Hipoestesia/etiología , Hipoestesia/genética , Hipoestesia/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Conducta Materna/fisiología , Ratones , Oxitocina/administración & dosificación , Oxitocina/metabolismo , Proteínas/genética , Proteínas/metabolismo , Conducta Social
15.
Mol Biol Evol ; 39(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35353898

RESUMEN

Functional classification of proteins from sequences alone has become a critical bottleneck in understanding the myriad of protein sequences that accumulate in our databases. The great diversity of homologous sequences hides, in many cases, a variety of functional activities that cannot be anticipated. Their identification appears critical for a fundamental understanding of the evolution of living organisms and for biotechnological applications. ProfileView is a sequence-based computational method, designed to functionally classify sets of homologous sequences. It relies on two main ideas: the use of multiple profile models whose construction explores evolutionary information in available databases, and a novel definition of a representation space in which to analyze sequences with multiple profile models combined together. ProfileView classifies protein families by enriching known functional groups with new sequences and discovering new groups and subgroups. We validate ProfileView on seven classes of widespread proteins involved in the interaction with nucleic acids, amino acids and small molecules, and in a large variety of functions and enzymatic reactions. ProfileView agrees with the large set of functional data collected for these proteins from the literature regarding the organization into functional subgroups and residues that characterize the functions. In addition, ProfileView resolves undefined functional classifications and extracts the molecular determinants underlying protein functional diversity, showing its potential to select sequences towards accurate experimental design and discovery of novel biological functions. On protein families with complex domain architecture, ProfileView functional classification reconciles domain combinations, unlike phylogenetic reconstruction. ProfileView proves to outperform the functional classification approach PANTHER, the two k-mer-based methods CUPP and eCAMI and a neural network approach based on Restricted Boltzmann Machines. It overcomes time complexity limitations of the latter.


Asunto(s)
Evolución Molecular , Proteínas , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Filogenia , Extractos Vegetales , Proteínas/química , Proteínas/genética
16.
Biosystems ; 214: 104636, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35181371

RESUMEN

The Canonical Table of the Genetic Code (CTGC) is constructed theoretically on the basis of the similarity of PFs (PF) of proteins with the conformation of 4-arc chain graphs (Karasev, 2019). Of the 64 conformations of the graph, specified by the position of the connectivity edges, and the matrices of 6 variables (x1 … x6), xi = (0, 1), 4 blocks of 16 elements each were formed. Then they were coded in the form of triplets based on the correspondence of pairs of variables to four letters of the code: 00 = C, 01 = U, 10 = G, 11 = A, and supplemented based on the known triplet-amino acid assignment. The resulting table is compared with the Periodic Table of Chemical Elements (PTCE). As in the PTCE, this CTGC has an initial element - a triplet that encodes graphs with zero number of connected edges. Within each block, vacancies are filled with connectivity edges in two alternative ways, both in rows and in the columns. As we move from the initial block 00 to the final block 11, there is a sequential filling of vacancies for variables x3x4: 00, 01, 10, 11. In general, the CTGC can be considered as a periodic system of triplets. Comparison with the previously described variety of tables of the genetic code made it possible to conclude that the CTGC more adequately reflects the properties of the genetic code. Prospects for the possible application of this table are being discussed.


Asunto(s)
Aminoácidos , Código Genético , Aminoácidos/genética , Código Genético/genética , Proteínas/genética
17.
Molecules ; 27(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35056751

RESUMEN

The predicted anti-oxidation is related to apoptosis, proliferation, lipid metabolism, cell differentiation, and immune response. There are some differences in the antioxidant capacity of the four typical components of ginkgo biloba extract (EGb) including ginkgo flavone (GF), ginkgolide (G), procyanidins (OPC), and organic acids (OA), and any two members of them can exhibit apparent synergistic effects. The order of DPPH scavenging ability was: OPC > GF > OA > G. The scavenging ability of procyanidins was close to that of VC; the scavenging capacity of ABTS was GF > OPC > OA > G. The GF:OPC (1:9) showed the best synergism in scavenging DPPH and ABTS radicals. The 193 kinds of small molecules reported in EGb were obtained by analyzing the properties of EGb. In order to construct a corresponding biological activity target set, molecular docking and the network pharmacology method were employed to build the molecular action mechanism network of a compound target, and the main biological functions and signaling pathways involved with their antioxidant activities were predicted. The results displayed that the top ten compounds which belonged to the two broad categories, ginkgo flavonoids and proanthocyanidins, could interact closely with several important target proteins (CASP3, SOD2, MAPK1, HSPA4, and NQO1). This would be expected to lay a theoretical foundation for the deep development of Ginkgo biloba extract.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Ginkgo biloba/química , Extractos Vegetales/química , Compuestos de Bifenilo/química , Sinergismo Farmacológico , Etanol/química , Humanos , Simulación del Acoplamiento Molecular , Picratos/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
18.
Mol Biol Rep ; 49(3): 1783-1790, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34837626

RESUMEN

BACKGROUND: Transgenic plants are becoming a more powerful tool in modern biotechnology. Genetic engineering was used in biotech-derived products to create genetically modified (GM) plants resistant to diseases. The onion (Allium cepa, L.) is a common, important perennial vegetable crop grown in Egypt for food and economic value. Onions are susceptible to a variety of fungal infections and diseases. Aspergillus niger is a common onion phytopathogen that causes diseases such as black mould (or black rot), which is a major issue, particularly when exporting onions. A. niger grows between the bulb's outer (dead, flaky) skin and the first fleshy scales, which become water-soaked. Thionin genes produce thionin proteins, which have antimicrobial properties against a variety of phytopathogens, including A. niger. Chitosan nanoparticles act as a carrier for the thionin gene, which allows A. cepa to resist infection by A. niger. METHODS AND RESULTS: Thionin gene (Thio-60) was transformed into A. cepa to be resistance to fungal infection. The gene was loaded on chitosan nanoparticles to be transformed into plants. Transgenic A. cepa had a 27% weight inhibition compared to non-transgenic one, which had a 69% inhibition. The expressed thionin protein has a 52% inhibitory effect on A. niger spore germination. All these findings supported thionin protein's antifungal activity as an antimicrobial peptide. Furthermore, the data presented here demonstrated the efficacy of chitosan nanoparticles in gene transformation. CONCLUSION: The present study describes the benefits of producing transgenic onion resistance to black rot diseases via expression of thionin proteins.


Asunto(s)
Nanopartículas , Cebollas , Aspergilosis , Enfermedades Pulmonares Fúngicas , Cebollas/química , Cebollas/genética , Cebollas/microbiología , Plantas Modificadas Genéticamente/genética , Proteínas/genética
19.
Bioinformatics ; 38(3): 703-709, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34694373

RESUMEN

MOTIVATION: The objective is to diagnose dynamics perturbations caused by amino-acid mutations as prerequisite to assess protein functional health or drug failure, simply using network models of protein X-ray structures. RESULTS: We find that the differences in the allocation of the atomic interactions of each amino acid to 1D, 2D, 3D, 4D structural levels between variants structurally robust, recover experimental dynamic perturbations. The allocation measure validated on two B-pentamers variants of AB5 toxins having 17 mutations, also distinguishes dynamic perturbations of pathogenic and non-pathogenic Transthyretin single-mutants. Finally, the main proteases of the coronaviruses SARS-CoV and SARS-CoV-2 exhibit changes in the allocation measure, raising the possibility of drug failure despite the main proteases structural similarity. AVAILABILITY AND IMPLEMENTATION: The Python code used for the production of the results is available at github.com/lorpac/protein_partitioning_atomic_contacts. The authors will run the analysis on any PDB structures of protein variants upon request. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Programas Informáticos , Biología Computacional/métodos , SARS-CoV-2/genética , Proteínas/genética , Proteínas/química , Aminoácidos , Péptido Hidrolasas
20.
Nutrients ; 13(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34836311

RESUMEN

The last decade has witnessed tremendous growth in tocotrienols (T3s) research, especially in the field of oncology, owing to potent anticancer property. Among the many types of cancers, colorectal cancer (CRC) is growing to become a serious global health threat to humans. Chemoprevention strategies in recent days are open to exploring alternative interventions to inhibit or delay carcinogenesis, especially with the use of bioactive natural compounds, such as tocotrienols. This scoping review aims to distil the large bodies of literature from various databases to identify the genes and their encoded modulations by tocotrienols and to explicate important mechanisms via which T3s combat CRC. For this scoping review, research papers published from 2010 to early 2021 related to T3s and human CRC cells were reviewed in compliance with the PRISMA guidelines. The study included research articles published in English, searchable on four literature databases (Ovid MEDLINE, PubMed, Scopus, and Embase) that reported differential expression of genes and proteins in human CRC cell lines following exposure to T3s. A total of 12 articles that fulfilled the inclusion and exclusion criteria of the study were short-listed for data extraction and analysis. The results from the analysis of these 12 articles showed that T3s, especially its γ and δ analogues, modulated the expression of 16 genes and their encoded proteins that are associated with several important CRC pathways (apoptosis, transcriptional dysregulation in cancer, and cancer progression). Further studies and validation work are required to scrutinize the specific role of T3s on these genes and proteins and to propose the use of T3s to develop adjuvant or multi-targeted therapy for CRC.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Proteínas/genética , Tocotrienoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor , Línea Celular Tumoral , Bases de Datos Factuales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Vitamina E/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA